Sains Malaysiana 53(11)(2024): 3593-3605
http://doi.org/10.17576/jsm-2024-5311-04
Potensi Peptida Sintetik Wolbachia (WolFar) bagi
Pembangunan Biopestisid Berdasarkan Kesan Perubahan Histologi Pada Sel Ovari
Kumbang Merah Palma, Rhynchophorus ferrugineus
(Potential of Synthetic Wolbachia (WolFar) Peptide for
Biopesticide Development Based on the Impression of Histological Changes in
Ovary Cells of the Red Palm Weevil, Rhynchophorus ferrugineus)
WAN NURUL ‘AIN, W.M.N.1, NURUL WAHIDA, O.2,3,*, YAAKOP, S.2,3 & NOREFRINA SHAFINAZ, M.N3
1Malaysian Palm Oil Board (MPOB), Wisma Dura, Lot PT
11545, No. 3, Jalan P/9b, 43650 Bandar Baru Bangi, Selangor, Malaysia
2Pusat Sistematik Serangga, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
30 April 2024/Accepted: 7 August 2024
Abstrak
Pendekatan alternatif perlu diterokai dengan mengkaji potensi
membangunkan biopestisid berdasarkan aplikasi kawalan biologi menggunakan
nematoda, virus dan jangkitan bakteria terhadap serangga perosak untuk
menawarkan penyelesaian yang lebih khusus dan lebih selamat berbanding racun
kimia. Wolbachia (Rickettsiales: Anaplasmataceae) merupakan bakteria
endosimbiotik yang telah mendapat banyak perhatian dan lebih dari sedekad ia
digunakan secara meluas terhadap pelbagai pengurusan perosak dan vektor kerana
mereka menunjukkan perubahan fisiologi sistem pembiakan dalam serangga yang
dijangkiti. Berbanding menggunakan seluruh organisma sebagai agen kawalan
biologi, novel Wolbachia sintetik peptida, WolFar telah disesuaikan dari
kawasan yang dipelihara protein permukaan Wolbachia (wsp) dan pertama
kali diuji pada spesies perosak invasif, kumbang merah palma (RPW), Rhynchophorus
ferrugineus. Kajian ini telah dijalankan untuk mengenal pasti kesan peptida WolFar berbeza kepekatan (0.83 mmol/L dan 1.66 mmol/L) terhadap perubahan
sel ovari RPW menggunakan teknik histologi dan pewarnaan H&E. Hasil
menunjukkan WolFar boleh dimanipulasi sebagai biopestisid yang berpotensi untuk
RPW kerana ia menyebabkan perubahan tidak normal pada histologi sel selepas
rawatan. Penemuan baharu kajian ini menunjukkan bahawa peptida berasaskan Wolbachia,
WolFar mempunyai potensi besar sebagai alat baharu untuk dibangunkan sebagai
formulasi biopestisid untuk mengawal populasi RPW.
Kata kunci: Agen kawalan biologi; histopatologi; kumbang perosak
Abstract
An alternative
approach should be explored by examining the potential of developing a
biopesticide based on biological control application using nematodes, viruses,
and bacterial infection towards insect pests to offer more specific solutions. Wolbachia (Rickettsiales: Anaplasmataceae)
is a common inheritable endosymbiotic bacterium has received much attention and
been broadly used for over a decade against various pest and vector management
as they manifest physiological changes in infected insects. Rather than using
whole organisms as a biological control agent, a novel Wolbachia synthetic
peptide, WolFar was customized from a
conserved region of the Wolbachia surface protein (wsp) and first
tested on invasive pest species, the red palm weevil (RPW), Rhynchophorus
ferrugineus. A study was conducted to identify the effects of WolFar synthetic peptide on the
histology on the RPW cell ovary. Results have shown WolFar could be
manipulated as a potential biopesticide for RPW as it triggered immune
system of RPW by causing abnormalities on the RPW cell histology after
treatment. The promising finding of this study indicates that Wolbachia-based peptide, WolFar has huge potential as a new tool
to be developed as a biopesticide formulation to control the population of RPW
and probably other insect pests in the future.
Keywords: Biological
control agent; histopathology; pest beetle
REFERENCES
Alves, T.J.S., Cruz, G.S., Wanderley-Teixeira, V., Teixeira, A.A.C.,
Oliveira, J.V., Correia, A.A., Câmara, C.A.G. & Cunha, F.M. 2014. Effects
of Piper hispidinervum on
spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotechnic
& Histochemistry 89(4): 245-255.
Bakli, D., Kirane-Amrani, L., Soltani-Mazouni, N. & Soltani, N.
2016. Methoxyfenozide, an ecdysteroid agonist insecticide, alters oocyte growth
during metamorphosis of Ephestia
kuehniella Zeller. African Entomology 24(2): 453-459.
Büning, J. 1994. Insect Ovary: Ultrastructure,
Previtellogenic Growth and Evolution. London: Chapman and Hall.
Catchot, B., Anderson, C.Jh., Gore,
J., Jackson, R., Rakshit, K., Musser, F. & Krishnan, N. 2020. Novaluron
prevents oogenesis and oviposition by inducing ultrastructural changes in
ovarian tissue of young adult Lygus lineolaris. Pest Management
Science 76(12): 4057-4063.
Chen, S.J., Lu, F., Cheng, J.A., Jiang, M.X. &
Way, M.O. 2012. Identification and biological role of the endosymbionts Wolbachia in rice water weevil
(Coleoptera: Curculionidae). Environmental
Entomology 41(3): 469-477.
El Naggar, S.E.M., Mohamed, H.F. & Mahmoud, E.A. 2010. Studies on
the morphology and histology of the
ovary of red palm weevil female irradiated with gamma rays. Journal of Asia-Pacific Entomology 13:
9-16.
El-Bokl, M.M., Baker, R.F.A., El-Gammal, H.L. & Mahmoud, M.Z. 2010.
Biological and histopathological effects of some insecticidal agents against
red palm weevil Rhynchophorus ferrugineus. Egyptian Academic Journal of Biological
Sciences 1(1): 7-22.
Fischer, A.H., Jacobson, K.A., Rose, J. & Zeller, R. 2008. Hematoxylin and eosin staining of tissue and
cell sections. Cold Spring
Harbor Protocols 2008: pdb.prot4986.
Ge, L.Q., Hu,
J.H., Wu, J.C., Yang, G.Q. & Gu, H. 2009. Insecticide - induced changes in
protein, RNA and DNA contents in ovary and fat body of female Nilaparvata lugens(Hemiptera: Delphacidae). Journal of Economic Entomology 102(4): 1506-1514.
Ghazawy, N. 2012.
Ultrastructural observations on the gonads and neurosecretory cells of Schistocerca gregaria after treatment
with Lufenuron (CGA-184699). Journal of
Orthoptera Research 21(2): 141-148.
Glancey, B.M. & Banks, W.A. 1988. Effect of the insect
growth regulator fenoxycarh on the ovaries of queens
of the red imported fire ant (Hymenoptera: Formicidae). Annals Entomological
Society of America 81(4): 642-648.
Hazaa, M.A.M., Alm El-Din, M.M.S.
& El-Akhdar, E.A.H. 2009. The histological and histochemical changes in the
gonads of the cotton leaf worm Spodoptera littoralis (Boisd.). Isotope and Radiation Research 41(4):
1465-1484.
Kumar, B. 2022. Sexual reproduction. In Reproductive Strategies
in Insects, edited by Omcar & Mishra,
G. Boca Raton: CRC Press.
Lind, D.S.
2004. Arginine and cancer. The Journal of
Nutrition 134: 2837-2841.
Liu, X.J.,
Jun, G., Liang, X.Y., Zhang, X.Y., Zhang, T.T., Liu, W.M., Zhang, J.Z. &
Zhang, M. 2022. Silencing of transcription factor E93 inhibits adult
morphogenesis and disrupts cuticle, wing and ovary development in Locusta
migratoria. Insect Science 29(2): 333-343.
Mahmud, A.I., Farminhao, J. &
Viez, E.R.A. 2015. Red palm weevil (Rhynchophorus
ferrugineus Olivier, 1790): Threat of palms. Journal of Biological Sciences 15(2): 56-67.
Minwuyelet, A., Petronio, G.P.,
Yewhalaw, D., Sciarretta, A., Magnifico, I., Nicolosi, D., Di Marco, R. &
Atenafu, G. 2023. Symbiotic Wolbachia in mosquitoes and its role in
reducing the transmission of mosquito-borne diseases: Updates and
prospects. Frontiers in Microbiology 14: 1267832.
Mohamed, M.I., Khaled, A.S., Abdel Fattah, H.M., Hussein, M.A., Salem,
D.A.M. & Fawki, S. 2015. Ultrastructure and histopathological alteration in
the ovaries of Callosobruchus maculatus (F.) (Coleoptera, Chrysomelidae) induced by the solar radiation. The Journal of Basic & Applied Zoology 68: 19-32.
Mohammed, M.A., Aman-Zuki,
A., Wahida, N.O., Tagami,
Y. & Yaakop, S. 2018. The role of a novel Wolbachia (Rickettsiales: Anaplasmataceae)
synthetic peptide, WolFar, in regulating
prostaglandin levels in the hemolymph of Acheta domesticus (Orthoptera: Gryllidae). Turkish Journal
of Zoology 42: 422-431.
Negm, A.A., Gabarty, A. &
Elelimy, H.A. 2022. Ultrastructure and histopathological alteration in the ovaries of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae) induced by x-ray radiation. Egyptian
Academic Journal of Biological Sciences. A, Entomology 15(4): 171-182.
Nijhout, H.F. 2021. Insect Hormones.
Princeton: Princeton University Press.
Norzainih, J.J., Harris, M.N., Nurul-Wahida, O., Salmah, Y. &
Norefrina Shafinaz, M.N. 2015. Continuous rearing of the red palm weevils, Rhynchophorus ferrugineus (Olivier),
1970 on sugarcane in laboratory for biological studies (Coleoptera:
Dryophthoridae). 3rd International
Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015), Dec 10-11, 2015, Singapore. hlm. 38-40.
Ortolá, B. & Daròs, J.A. 2024. RNA interference in
insects: From a natural mechanism of gene expression regulation to a
biotechnological crop protection promise. Biology 13(3): 137.
Osman, S.E.I., Swidan, M.H., Kheirallah, D.A. & Nour, F.E. 2016.
Histological effects of essential oils, their monoterpenoids and insect growth
regulators on midgut, integument of larvae and ovaries of Khapra Beetle, Trogoderma granarium Everts. Journal of Biological Sciences 16(3):
93-101.
Raikhel, A.S., Kokozei, V.A., Zhu, J., Martin, D., Wang, S.F., Li, C.,
Sun, G., Ahmed, A., Dittimei, A. & Attardo, N.G. 2002. Molecular biology of
mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen
immunity. Insect Biochemical and
Molecular Biology 32: 1275-1286.
Wan Nurul ‘Ain, W.M.N. & Nurul Wahida, O. 2021. Morphology,
histology and serotonin
immunoreactivity on salivary glands of stick insect, Phobaeticus serratipes (Phasmida: Phasmatidae). Jordan Journal of Biological Sciences 14(1): 11-15.
Yang, R.L., Zhang, Q., Fan, J.Y., Yue, Y., Chen, E.H., Yuan, G.R., Dou,
W. & Wang, J.J. 2021. RNA interference of Argonaute‐1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest
Management Science 77(9): 3921-3933.
Zabala, N.A., Jaffe, K. & Maldonado, H. 1984. Arginine
has morphine-like action in insects. Experientia 40:
733-734.
Zha, X., Zhang, W., Zhou, C., Zhang, L., Xiang, Z. & Xia, Q. 2014. Detection
and characterization of Wolbachia in
silkworm. Genetics and Molecular Biology 37(3): 573-580.
*Corresponding
author; email: wahida@ukm.edu.my