Sains Malaysiana 53(11)(2024): 3593-3605

http://doi.org/10.17576/jsm-2024-5311-04

 

Potensi Peptida Sintetik Wolbachia (WolFar) bagi Pembangunan Biopestisid Berdasarkan Kesan Perubahan Histologi Pada Sel Ovari Kumbang Merah Palma, Rhynchophorus ferrugineus

(Potential of Synthetic Wolbachia (WolFar) Peptide for Biopesticide Development Based on the Impression of Histological Changes in Ovary Cells of the Red Palm Weevil, Rhynchophorus ferrugineus)

 

WAN NURUL ‘AIN, W.M.N.1, NURUL WAHIDA, O.2,3,*, YAAKOP, S.2,3 & NOREFRINA SHAFINAZ, M.N3

 

1Malaysian Palm Oil Board (MPOB), Wisma Dura, Lot PT 11545, No. 3, Jalan P/9b, 43650 Bandar Baru Bangi, Selangor, Malaysia

2Pusat Sistematik Serangga, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 30 April 2024/Accepted: 7 August 2024

 

Abstrak

Pendekatan alternatif perlu diterokai dengan mengkaji potensi membangunkan biopestisid berdasarkan aplikasi kawalan biologi menggunakan nematoda, virus dan jangkitan bakteria terhadap serangga perosak untuk menawarkan penyelesaian yang lebih khusus dan lebih selamat berbanding racun kimia. Wolbachia (Rickettsiales: Anaplasmataceae) merupakan bakteria endosimbiotik yang telah mendapat banyak perhatian dan lebih dari sedekad ia digunakan secara meluas terhadap pelbagai pengurusan perosak dan vektor kerana mereka menunjukkan perubahan fisiologi sistem pembiakan dalam serangga yang dijangkiti. Berbanding menggunakan seluruh organisma sebagai agen kawalan biologi, novel Wolbachia sintetik peptida, WolFar telah disesuaikan dari kawasan yang dipelihara protein permukaan Wolbachia (wsp) dan pertama kali diuji pada spesies perosak invasif, kumbang merah palma (RPW), Rhynchophorus ferrugineus. Kajian ini telah dijalankan untuk mengenal pasti kesan peptida WolFar berbeza kepekatan (0.83 mmol/L dan 1.66 mmol/L) terhadap perubahan sel ovari RPW menggunakan teknik histologi dan pewarnaan H&E. Hasil menunjukkan WolFar boleh dimanipulasi sebagai biopestisid yang berpotensi untuk RPW kerana ia menyebabkan perubahan tidak normal pada histologi sel selepas rawatan. Penemuan baharu kajian ini menunjukkan bahawa peptida berasaskan Wolbachia, WolFar mempunyai potensi besar sebagai alat baharu untuk dibangunkan sebagai formulasi biopestisid untuk mengawal populasi RPW.

 

Kata kunci: Agen kawalan biologi; histopatologi; kumbang perosak

 

Abstract

An alternative approach should be explored by examining the potential of developing a biopesticide based on biological control application using nematodes, viruses, and bacterial infection towards insect pests to offer more specific solutions. Wolbachia (Rickettsiales: Anaplasmataceae) is a common inheritable endosymbiotic bacterium has received much attention and been broadly used for over a decade against various pest and vector management as they manifest physiological changes in infected insects. Rather than using whole organisms as a biological control agent, a novel Wolbachia synthetic peptide, WolFar was customized from a conserved region of the Wolbachia surface protein (wsp) and first tested on invasive pest species, the red palm weevil (RPW), Rhynchophorus ferrugineus. A study was conducted to identify the effects of WolFar synthetic peptide on the histology on the RPW cell ovary. Results have shown WolFar could be manipulated as a potential biopesticide for RPW as it triggered immune system of RPW by causing abnormalities on the RPW cell histology after treatment. The promising finding of this study indicates that Wolbachia-based peptide, WolFar has huge potential as a new tool to be developed as a biopesticide formulation to control the population of RPW and probably other insect pests in the future.

 

Keywords: Biological control agent; histopathology; pest beetle

 

REFERENCES

Alves, T.J.S., Cruz, G.S., Wanderley-Teixeira, V., Teixeira, A.A.C., Oliveira, J.V., Correia, A.A., Câmara, C.A.G. & Cunha, F.M. 2014. Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotechnic & Histochemistry 89(4): 245-255.

Bakli, D., Kirane-Amrani, L., Soltani-Mazouni, N. & Soltani, N. 2016. Methoxyfenozide, an ecdysteroid agonist insecticide, alters oocyte growth during metamorphosis of Ephestia kuehniella Zeller. African Entomology 24(2): 453-459.

Büning, J. 1994. Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution. London: Chapman and Hall.

Catchot, B., Anderson, C.Jh., Gore, J., Jackson, R., Rakshit, K., Musser, F. & Krishnan, N. 2020. Novaluron prevents oogenesis and oviposition by inducing ultrastructural changes in ovarian tissue of young adult Lygus lineolarisPest Management Science 76(12): 4057-4063.

Chen, S.J., Lu, F., Cheng, J.A., Jiang, M.X. & Way, M.O. 2012. Identification and biological role of the endosymbionts Wolbachia in rice water weevil (Coleoptera: Curculionidae). Environmental Entomology 41(3): 469-477.

El Naggar, S.E.M., Mohamed, H.F. & Mahmoud, E.A. 2010. Studies on the morphology      and histology of the ovary of red palm weevil female irradiated with gamma rays. Journal of Asia-Pacific Entomology 13: 9-16.

El-Bokl, M.M., Baker, R.F.A., El-Gammal, H.L. & Mahmoud, M.Z. 2010. Biological and histopathological effects of some insecticidal agents against red palm weevil Rhynchophorus ferrugineus. Egyptian Academic Journal of Biological Sciences 1(1): 7-22.

Fischer, A.H., Jacobson, K.A., Rose, J. & Zeller, R. 2008. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols 2008: pdb.prot4986.

Ge, L.Q., Hu, J.H., Wu, J.C., Yang, G.Q. & Gu, H. 2009. Insecticide - induced changes in protein, RNA and DNA contents in ovary and fat body of female Nilaparvata lugens(Hemiptera: Delphacidae). Journal of Economic Entomology 102(4): 1506-1514.

Ghazawy, N. 2012. Ultrastructural observations on the gonads and neurosecretory cells of Schistocerca gregaria after treatment with Lufenuron (CGA-184699). Journal of Orthoptera Research 21(2): 141-148.

Glancey, B.M. & Banks, W.A. 1988. Effect of the insect growth regulator fenoxycarh on the ovaries of queens of the red imported fire ant (Hymenoptera: Formicidae). Annals Entomological Society of America 81(4): 642-648.

Hazaa, M.A.M., Alm El-Din, M.M.S. & El-Akhdar, E.A.H. 2009. The histological and histochemical changes in the gonads of the cotton leaf worm Spodoptera littoralis (Boisd.). Isotope and Radiation Research 41(4): 1465-1484.

Kumar, B. 2022. Sexual reproduction. In Reproductive Strategies in Insects, edited by Omcar & Mishra, G. Boca Raton: CRC Press.

Lind, D.S. 2004. Arginine and cancer. The Journal of Nutrition 134: 2837-2841.

Liu, X.J., Jun, G., Liang, X.Y., Zhang, X.Y., Zhang, T.T., Liu, W.M., Zhang, J.Z. & Zhang, M. 2022. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoria. Insect Science 29(2): 333-343.

Mahmud, A.I., Farminhao, J. & Viez, E.R.A. 2015. Red palm weevil (Rhynchophorus ferrugineus Olivier, 1790): Threat of palms. Journal of Biological Sciences 15(2): 56-67.

Minwuyelet, A., Petronio, G.P., Yewhalaw, D., Sciarretta, A., Magnifico, I., Nicolosi, D., Di Marco, R. & Atenafu, G. 2023. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: Updates and prospects. Frontiers in Microbiology 14: 1267832.

Mohamed, M.I., Khaled, A.S., Abdel Fattah, H.M., Hussein, M.A., Salem, D.A.M. & Fawki, S. 2015. Ultrastructure and histopathological alteration in the ovaries of Callosobruchus maculatus (F.) (Coleoptera, Chrysomelidae) induced by the solar radiation. The Journal of Basic & Applied Zoology 68: 19-32.

Mohammed, M.A., Aman-Zuki, A., Wahida, N.O., Tagami, Y. & Yaakop, S. 2018. The role of a novel Wolbachia (Rickettsiales: Anaplasmataceae) synthetic peptide, WolFar, in regulating prostaglandin levels in the hemolymph of Acheta domesticus (Orthoptera: Gryllidae). Turkish Journal of Zoology 42: 422-431.

Negm, A.A., Gabarty, A. & Elelimy, H.A. 2022. Ultrastructure and histopathological alteration in the ovaries of Ceratitis capitata (Wiedemann)(Diptera: Tephritidae) induced by x-ray radiation. Egyptian Academic Journal of Biological Sciences. A, Entomology 15(4): 171-182.

Nijhout, H.F. 2021. Insect Hormones. Princeton: Princeton University Press.

Norzainih, J.J., Harris, M.N., Nurul-Wahida, O., Salmah, Y. & Norefrina Shafinaz, M.N. 2015. Continuous rearing of the red palm weevils, Rhynchophorus ferrugineus (Olivier), 1970 on sugarcane in laboratory for biological studies (Coleoptera: Dryophthoridae). 3rd International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015), Dec 10-11, 2015, Singapore. hlm. 38-40.

Ortolá, B. & Daròs, J.A. 2024. RNA interference in insects: From a natural mechanism of gene expression regulation to a biotechnological crop protection promise. Biology 13(3): 137.

Osman, S.E.I., Swidan, M.H., Kheirallah, D.A. & Nour, F.E. 2016. Histological effects of essential oils, their monoterpenoids and insect growth regulators on midgut, integument of larvae and ovaries of Khapra Beetle, Trogoderma granarium Everts. Journal of Biological Sciences 16(3): 93-101.

Raikhel, A.S., Kokozei, V.A., Zhu, J., Martin, D., Wang, S.F., Li, C., Sun, G., Ahmed, A., Dittimei, A. & Attardo, N.G. 2002. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochemical and Molecular Biology 32: 1275-1286.

Wan Nurul ‘Ain, W.M.N. & Nurul Wahida, O. 2021. Morphology, histology and             serotonin immunoreactivity on salivary glands of stick insect, Phobaeticus serratipes (Phasmida: Phasmatidae). Jordan Journal of Biological Sciences 14(1): 11-15.

Yang, R.L., Zhang, Q., Fan, J.Y., Yue, Y., Chen, E.H., Yuan, G.R., Dou, W. & Wang, J.J. 2021. RNA interference of Argonaute‐1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Management Science 77(9): 3921-3933.

Zabala, N.A., Jaffe, K. & Maldonado, H. 1984. Arginine has morphine-like action in insects. Experientia 40: 733-734.

Zha, X., Zhang, W., Zhou, C., Zhang, L., Xiang, Z. & Xia, Q. 2014. Detection and characterization of Wolbachia in silkworm. Genetics and Molecular Biology 37(3): 573-580.

 

*Corresponding author; email: wahida@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next